
Learn the technical highlights of the
RouteSavvy Route Optimization API

• Programming tips

• GET & POST specifications

• Code samples

RouteSavvy Route
Optimization API
Documentation

www.RouteSavvy.com

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

 Introduction 3

Section 1 - What is the

 RouteSavvy API? 4

Section 2 - GET, POST & URL

 Links for Developers 5

Section 2a - Links to Code Samples 6

 Section 3 - Predictive Traffic Functions

 Sample Code 7

Section 4 - OnTerra Systems USA

 Tech Support 25

Section 5 - Free Trial & Purchase

 the RouteSavvy API 26

 Contents

2

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

Introduction
For developers seeking an affordable, powerful

route optimization engine to incorporate into

applications being developed, the RouteSavvy API

routing engine emerges as one of the most robust

options on the market today. This versatile, flexible

routing engine is written in a RESTFUL/JSON

format, making it an easy & cost-effective option,

as well as affordable. What’s more, the RouteSavvy

routing engine offers a wealth of options & benefits

for developers, including:

• An affordable, flat-fee pricing structure

• Support for multiple programming languages

• 3 routing engine options

• Free code samples…and more

Check out the following documentation to learn

more about the RouteSavvy route optimization

API, how it works, how it saves time and money, and

buying tips.

3

RouteSavvy API General

& Purchase Information
https://www.routesavvy.com/
routesavvy-route-optimization-api

RouteSavvy API

Online Documentation
https://www.routesavvy.com/
routesavvy-api-docs

RouteSavvy API Free

Trial Sign-up
https://www.routesavvy.com/
routesavvy-api-free-trial

FREE

Trial

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

4

Section 1
What Is the RouteSavvy API?

The RouteSavvy Route Optimization API is an

easy-to-use REST service for optimizing driving

stop order.

RSAPI.svc allows both GET and POST options.

Requests use JSON-formatted strings and results

are returned in JSON format for optimal use in

web applications.

The optimized results return stops ordered for

the most efficient driving route. Results include

turn-by-turn directions for each route leg and a

latitude-longitude polyline describing the route for

use in map visualization.

RouteSavvy Route
Optimization API: This is
a sample of optimized Stops
and RoutePath displayed
over Bing Maps.

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

Section 2
GET & POST Specifications
and URL Links

GET Specifications

• RSAPI.svc/GetOptimize requests are limited to

 the URL-encoded parameter maximum length.

• Although this varies by browser, 2048 characters

 is the typical suggested limit for encoding stops

 in the URL string.

• Because of the URL length limitation smaller

 numbers of stops can be optimized.

POST Specifications

• RSAPI.svc/PostOptimize requests do not have

 URL length limitations and can accommodate

 large numbers of stops.

URLs

• Base URL: https://optimizer2.routesavvy.com

• Service wsdl URL:

 https://optimizer2.routesavvy.com/RSAPI.svc

• GET URL: https://optimizer2.routesavvy.com/

 RSAPI.svc/GetOptimize?query={jsonquery}

• POST URL: https://optimizer2.routesavvy.com/

 RSAPI.svc/PostOptimize
5

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

Section 2a
Links to Code Samples

You’ll find code samples to view in

this Documentation.

We also have actual code samples online for the

following programming languages:

• C#

• Java

• JavaScript

• Python

• VB.NET

To obtain these actual code samples and download

them, please visit: https://www.routesavvy.com/

route-optimization-api-documentation/

6

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

7

Section 3
Predictive Traffic Functions & Sample Code

Predictive Traffic is an advanced route optimization feature

that allows fleet managers to plan a multi-stop route based

on when the route will be driven. This is accomplished because

historical data on known traffic patterns (such as at rush hour)

are incorporated into the calculations for the most efficient route.

Request JSON

Example JSON Request:

{

 “Locations”: [{

 “Name”: “Customer A”,

 “Latitude”: 39.595140,

 “Longitude”: -104.849620,

 “VisitDurationInMinutes”: 10

},

 {

 “Name”: “Customer B”,

 “Latitude”: 39.558012,

 “Longitude”: -104.906670,

 “VisitDurationInMinutes”: 5

},

 {

 “Name”: “Customer C”,

 “Latitude”: 39.566128,

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

8

 “Longitude”: -104.965901,

 “VisitDurationInMinutes”: 10

 },

 {

 “Name”: “Customer D”,

 “Latitude”: 39.535220,

 “Longitude”: -104.882080,

 “VisitDurationInMinutes”: 10

 },

 {

 “Name”: “Customer E”,

 “Latitude”: 39.555669,

 “Longitude”: -104.882878,

 “VisitDurationInMinutes”: 5

 },

],

 “OptimizeParameters”: {

 “AppId”: “90c13fb711be4684bc724d306321a609”,

 “OptimizeType”: “distance”,

 “RouteType”: “realroadcar”,

 “Avoid”: “none”,

 “Departure”: “2020-05-23T17:30:00-08:00”

 }

}

Predictive Traffic Functions & Sample Code (continued)

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

9

Request JSON

Request components:

Array of Locations – minimum 3 locations (note that no optimization is

required until four or more stops are requested.)

{ Example

“Name”: string, “Customer A”

“Latitude”: float, 39.595140

“Longitude”: float, -104.906670

“VisitDurationInMinutes”: integer minutes 10

}

Development Notes 1:

The first location is the start stop and the last location

is the ending stop. If you wish to optimize a round-trip

route, duplicate the start stop as the end stop.

Optimize Parameters:

“OptimizeParameters”: { example:

 “AppId”: string - user token “90c13…..21a609”

 “OptimizeType”: string - time or distance “distance”

 “RouteType”: string – basic ,realroadcar, realroadcarpredictive

“realroadcar”

 “Avoid”: string - none, tolls, or highways “none”

 “Departure”: string datetime “2020-05-

23T17:30:00-08:00”

Predictive Traffic Functions & Sample Code (continued)

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

10

Development Notes 2:

RouteType basic is limited to 500 stops, realroadcar and realroadcarpredictive

are limited to 300 stops.

RouteType realroadcarpredictive uses a future Departure date time for the start

time, which accounts for historical variations by day of week, holidays, and

rush-hour traffic.

Departure date time for realroadcarpredictive is date and time of departure

from the origin point. The time zone will be assumed to be that of the origin

latitude,longitude.

The departure value must be in the future in the date-time format:

yyyy-MM-ddTHH:mm:ss

Example:

If Departure=2019-01-30T08:00:00 and the origin point is 39.595140,

-104.906670 this will indicate a departure at 8:00am MST or 2019-01-

30T15:00:00+00:00 UTC

The default departure behavior can be overridden by adding a timezone offset

to the departure datetime. Example PST override 2019-01-30T08:00:00-08:00

yyyy-MM-ddTHH:mm:ss-HH:00.

Predictive Traffic Functions & Sample Code (continued)

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

11

Example:

Request:

Departure”: “2020-01-23T08:00:00-08:00” will force time to PST

and override timezone of origin location.

Result:

“Arrival”: “2020-01-23T16:11:56+00:00”,

“Departure”: “2020-01-23T16:16:56+00:00”

RouteTypes, basic and realroadcar only use the departure time for labeling

directions and calculating stop arrival/departure times but does not account

for traffic variations. The depart date is always today’s date and time zone

offsets are ignored.

Here’s a sample GET Optimize request which can run from

a browser once your token has been pasted into the AppId.

http://optimizer2.routesavvy.com/RSAPI.svc/GETOptimize?query= {

“Locations”: [{ “Name”: “Customer A”, “Latitude”: 39.595140, “Longitude”:

-104.849620, “VisitDurationInMinutes”:10}, { “Name”: “Customer B”,

“Latitude”: 39.558012, “Longitude”: -104.906670, “VisitDurationInMin-

utes”:5}, { “Name”: “Customer C”, “Latitude”: 39.566128, “Longitude”:

-104.965901, “VisitDurationInMinutes”:10}, { “Name”: “Customer D”,

“Latitude”: 39.535220, “Longitude”: -104.882080, “VisitDurationInMin-

utes”:10}, { “Name”: “Customer D2”, “Latitude”: 39.535220, “Longitude”:

Predictive Traffic Functions & Sample Code (continued)

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

12

-104.882080, “VisitDurationInMinutes”:10},{ “Name”: “Customer E”,

“Latitude”: 39.555669, “Longitude”: -104.882878, “VisitDurationInMin-

utes”:5}, { “Name”: “Customer F”, “Latitude”: 39.595030, “Longitude”:

-104.804320, “VisitDurationInMinutes”:5}, { “Name”: “Customer G”,

“Latitude”: 39.624000, “Longitude”: -104.896010, “VisitDurationInMin-

utes”:5}, { “Name”: “Customer H”, “Latitude”: 39.538212, “Longitude”:

-104.860457, “VisitDurationInMinutes”:10}, { “Name”: “Customer I”,

“Latitude”: 39.534298, “Longitude”: -104.790182, “VisitDurationInMin-

utes”:10}, { “Name”: “Customer J”, “Latitude”: 39.536745, “Longitude”:

-104.856546, “VisitDurationInMinutes”:5}, { “Name”: “Customer K”,

“Latitude”: 39.567508, “Longitude”: -104.923069, “VisitDurationInMin-

utes”:5}], “OptimizeParameters”: { “AppId”: “<user token>”, “OptimizeType”:

“distance”, “RouteType”: “realroadcar”,”Avoid”: “none”, “Departure”:

“2020-05-23T17:30:00”}}

Sample POST optimize request

http://optimizer2.routesavvy.com/RSAPI.svc/POSTOptimize

{

 “Locations”: [{

 “Name”: “Customer A”,

 “Latitude”: 39.595140,

 “Longitude”: -104.849620,

 “VisitDurationInMinutes”: 10

 },

 {

 “Name”: “Customer B”,

Predictive Traffic Functions & Sample Code (continued)

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

13

 “Latitude”: 39.558012,

 “Longitude”: -104.906670,

 “VisitDurationInMinutes”: 5

 },

 {

 “Name”: “Customer C”,

 “Latitude”: 39.566128,

 “Longitude”: -104.965901,

 “VisitDurationInMinutes”: 10

 },

{

 “Name”: “Customer D”,

 “Latitude”: 39.535220,

 “Longitude”: -104.882080,

 “VisitDurationInMinutes”: 10

 },

 {

 “Name”: “Customer E”,

 “Latitude”: 39.555669,

 “Longitude”: -104.882878,

 “VisitDurationInMinutes”: 5

 },

 “OptimizeParameters”: {

Predictive Traffic Functions & Sample Code (continued)

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

14

Predictive Traffic Functions & Sample Code (continued)

 “AppId”: “90c13fb711be4684bc724d306321a609”,

 “OptimizeType”: “distance”,

 “RouteType”: “realroadcar”,

 “Avoid”: “none”,

 “Departure”: “2020-05-23T17:30:00-08:00”

 }

}

Result JSON

Sample JSON Result:

{

 “Message”: “Success”,

 “OptimizedStops”: [

 {

 “Arrival”: null,

 “Departure”: “9:25:00 3/29/2018”,

 “Distance”: null,

 “Duration”: null,

 “IsDuplicate”: false,

 “Name”: “Customer A”,

 “RouteLocation”: {

 “Latitude”: 39.59514,

 “Longitude”: -104.84962

 },

 “StopTimeMinutes”: 10

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

15

Predictive Traffic Functions & Sample Code (continued)

 },

 {

 “Arrival”: “9:39:44 3/29/2018”,

 “Departure”: “9:44:44 3/29/2018”,

 “Distance”: “4.14 miles (6.67 km)”,

 “Duration”: “14 minutes, 44 seconds”,

 “IsDuplicate”: false,

 “Name”: “Customer G”,

 “RouteLocation”: {

 “Latitude”: 39.624,

 “Longitude”: -104.89601

 },

 “StopTimeMinutes”: 5

},

 {

 “Arrival”: “10:06:40 3/29/2018”,

 “Departure”: “10:11:40 3/29/2018”,

 “Distance”: “6.88 miles (11.07 km)”,

 “Duration”: “21 minutes, 56 seconds”,

 “IsDuplicate”: false,

 “Name”: “Customer F”,

 “RouteLocation”: {

 “Latitude”: 39.59503,

 “Longitude”: -104.80432

 },

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

16

Predictive Traffic Functions & Sample Code (continued)

 “StopTimeMinutes”: 5

 },

 .

 .

 .

 },

{

 “Arrival”: “12:03:39 3/29/2018”,

 “Departure”: “12:08:39 3/29/2018”,

 “Distance”: “2.38 miles (3.84 km)”,

 “Duration”: “4 minutes, 59 seconds”,

 “IsDuplicate”: false,

 “Name”: “Customer K”,

 “RouteLocation”: {

 “Latitude”: 39.567508,

 “Longitude”: -104.923069

 },

 “StopTimeMinutes”: 5

 }

],

 “Route”: {

 “DriveDistance”: 51.698,

 “DriveDistanceUnit”: “Kilometer”,

 “DriveTime”: 5019,

 “DriveTimeUnit”: “Second”,

 “RouteLegs”: [

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

17

 {

 “Directions”: [

 “Depart CO-88 W / E Arapahoe Rd

 toward S Paris St”,

 “Turn right onto S Paris St”,

 “Turn left onto E Peakview Ave”,

 “Turn right onto S Havana St”,

 “Turn left onto E Caley Ave”,

 “Turn right onto S Dayton St”,

 “Turn left onto E Orchard Rd”,

 “Turn right onto DTC Blvd”,

 “Turn left onto E Prentice Ave”,

 “Bear right onto S Ulster St”,

 “Turn left onto E Belleview Ave”,

 “Make a U-turn at Promenade Pl”,

 “Arrive at E Belleview Ave”

],

 “DriveDistance”: 6.668,

 “DriveTime”: 884,

 “LegBegin”: {

 “Name”: “Customer A”,

 “RouteLocation”: {

 “Latitude”: 39.59514,

 “Longitude”: -104.84962

 }

 },

Predictive Traffic Functions & Sample Code (continued)

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

18

 “LegEnd”: {

 “Name”: “Customer G”,

 “RouteLocation”: {

 “Latitude”: 39.624,

 “Longitude”: -104.89601

 }

 }

 },

 {

 “Directions”: [

 “Depart E Belleview Ave toward S Ulster St”,

 “Turn right onto S Ulster St”,

 “Turn left onto E Prentice Ave”,

 “Turn right onto DTC Blvd”,

 “Turn left onto E Orchard Rd”,

 “Turn right onto S Dayton St”,

 “Turn left onto E Caley Ave”,

 “Turn right onto S Havana St”,

 “Turn left onto E Peakview Ave”,

 “At roundabout, take 1st exit onto S Peoria St”,

 “Turn left onto CO-88 / E Arapahoe Rd”,

 “Turn left onto S Helena St”,

 “Turn right onto road”,

 “Take ramp right”,

 “Arrive at ramp”

Predictive Traffic Functions & Sample Code (continued)

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

19

Predictive Traffic Functions & Sample Code (continued)

],

 “DriveDistance”: 11.065,

 “DriveTime”: 1316,

 “LegBegin”: {

 “Name”: “Customer G”,

 “RouteLocation”: {

 “Latitude”: 39.624,

 “Longitude”: -104.89601

 }

 },

 “LegEnd”: {

 “Name”: “Customer F”,

 “RouteLocation”: {

 “Latitude”: 39.59503,

 “Longitude”: -104.8043

 }

 }

 },

 .

 .

 .

 {

 “Directions”: [

 “Depart E County Line Rd toward E County Line Rd”,

 “Turn left onto County Road 29 / S Holly St”,

 “Arrive at County Road 29 / S Holly St”

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

20

],

 “DriveDistance”: 3.838,

 “DriveTime”: 299,

 “LegBegin”: {

 “Name”: “Customer C”,

 “RouteLocation”: {

 “Latitude”: 39.566128,

 “Longitude”: -104.965901

 }

 },

 “LegEnd”: {

 “Name”: “Customer K”,

“RouteLocation”: {

 “Latitude”: 39.56745,

 “Longitude”: -104.92307

 }

 }

 }

],

 “RoutePath”: [

 [39.595139,-104.849619],

 [39.595139,-104.85009],

 [39.59552,-104.85009],

 .

 .

 .

Predictive Traffic Functions & Sample Code (continued)

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

21

 [39.565979,-104.92306],

 [39.56614,-104.923069],

 [39.56745,-104.923069]

]

 }

}

Result Components

{

 “Message”: string - “Success” or error message

 “OptimizedStops”: Array of stops

 “Route”: route details

}

OptimizedStops Array of stops in the new optimized order

 Stops Example

 “Arrival”: string date time “9:39:44 3/29/2018”,

 “Departure”: string date time “9:44:44 3/29/2018”,

 “Distance”: string distance mi and km “4.14 miles (6.67 km)”,

 “Duration”: string drive time min and sec “14 minutes, 44 seconds”,

 “IsDuplicate”: Boolean false,

 “Name”: string “Customer G”,

 “RouteLocation”: {

 “Latitude”: float 39.624,

 “Longitude”: float -104.89601

 },

 “StopTimeMinutes”: integer 5

OptimizedStops

Predictive Traffic Functions & Sample Code (continued)

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

22

[

 {

 “Arrival”: null,

 “Departure”: “9:25:00 3/29/2018”,

 “Distance”: null,

 “Duration”: null,

 “IsDuplicate”: false,

 “Name”: “Customer A”,

 “RouteLocation”: {

 “Latitude”: 39.59514,

 “Longitude”: -104.84962

 },

 “StopTimeMinutes”: 10

 },

 {

 “Arrival”: “9:39:44 3/29/2018”,

 “Departure”: “9:44:44 3/29/2018”,

 “Distance”: “4.14 miles (6.67 km)”,

 “Duration”: “14 minutes, 44 seconds”,

 “IsDuplicate”: false,

 “Name”: “Customer G”,

 “RouteLocation”: {

 “Latitude”: 39.624,

 “Longitude”: -104.89601

 },

 “StopTimeMinutes”: 5

 },

Predictive Traffic Functions & Sample Code (continued)

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

23

Result Components

{

 “DriveDistance”: float total distance in DriveDistanceUnit 51.698,

 “DriveDistanceUnit”: string “Kilometer”,

 “DriveTime”: integer time in DriveTimeUnit 5019,

 “DriveTimeUnit”: string “Second”,

 “RouteLegs”: Array of Route Legs […]

 “RoutePath”: Array of lat,lon […]

 }

RouteLegs

{ Example

 “Directions”: Array of strings

 [

 “Depart CO-88 W toward S Paris St”,

 “Turn right onto S Paris St”,

 “Turn left onto E Peakview Ave”,

 “Turn right onto S Havana St”,

 “Turn left onto E Caley Ave”,

 “Turn right onto S Dayton St”,

 “Turn left onto E Orchard Rd”,

],

 “DriveDistance”: float in DriveDistanceUnit 6.668,

 “DriveTime”: integer in DriveTimeUnit 884,

 “LegBegin”: {

 “Name”: string “Customer A”,

 “RouteLocation”: {

 “Latitude”: float 39.59514,

 “Longitude”: float -104.84962

Predictive Traffic Functions & Sample Code (continued)

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

24

 }

},

 “LegEnd”: {

 “Name”: string “Customer G”,

 “RouteLocation”: {

 “Latitude”: float 39.624,

 “Longitude”: float -104.89601

 }

 }

 },

RoutePath

[

 [39.595139,-104.849619],

 [39.595139,-104.85009],

 [39.59552,-104.85009],
 .
 .

 .

Errors results

If there is an error, Message returns information about the error.

OptimizedStops and Route are null.

{

“Message”: “Invalid Token. For assistance, please contact

routesavvy@onterrasystems.com”,

 “OptimizedStops”: null,

 “Route”: null

Predictive Traffic Functions & Sample Code (continued)

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

25

Section 4
OnTerra Systems Tech Support

OnTerra Systems USA offers exceptional tech

support for developers who need to incorporate

route optimization into software solutions they

are developing.

How to Contact OnTerra Systems

for Tech Support

For tech support on incorporating the RouteSavvy

API into your application or software:

support@routesavvy.com

RouteSavvy Route Optimization API Documentation

RouteSavvy.com

Section 5
Free Trial or Purchase the
RouteSavvy API

26

RouteSavvy API

Online Documentation
https://www.routesavvy.com/
routesavvy-api-docs

RouteSavvy API General

& Purchase Information
https://www.routesavvy.com/
routesavvy-route-optimization-api

RouteSavvy API Free

Trial Sign-up
https://www.routesavvy.com/
routesavvy-api-free-trial

FREE

